2-Dimensional Directed Type Theory

نویسندگان

  • Daniel R. Licata
  • Robert Harper
چکیده

Recent work on higher-dimensional type theory has explored connections between Martin-Löf type theory, higher-dimensional category theory, and homotopy theory. These connections suggest a generalization of dependent type theory to account for computationally relevant proofs of propositional equality—for example, taking IdSet A B to be the isomorphisms between A and B. The crucial observation is that all of the familiar type and term constructors can be equipped with a functorial action that describes how they preserve such proofs. The key benefit of higher-dimensional type theory is that programmers and mathematicians may work up to isomorphism and higher equivalence, such as equivalence of categories. In this paper, we consider a further generalization of higher-dimensional type theory, which associates each type with a directed notion of transformation between its elements. Directed type theory accounts for phenomena not expressible in symmetric higher-dimensional type theory, such as a universe set of sets and functions, and a type Ctx used in functorial abstract syntax. Our formulation requires two main ingredients: First, the types themselves must be reinterpreted to take account of variance; for example, a Π type is contravariant in its domain, but covariant in its range. Second, whereas in symmetric type theory proofs of equivalence can be internalized using the Martin-Löf identity type, in directed type theory the two-dimensional structure must be made explicit at the judgemental level. We describe a 2-dimensional directed type theory, or 2DTT, which is validated by an interpretation into the strict 2-category Cat of categories, functors, and natural transformations. We also discuss applications of 2DTT for programming with abstract syntax, generalizing the functorial approach to syntax to the dependently typed and mixed-variance case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-Dimensional Directed Dependent Type Theory

The groupoid interpretation of dependent type theory given by Hofmann and Streicher associates to each closed type a category whose objects represent the elements of that type and whose maps represent proofs of equality of elements. The categorial structure ensures that equality is reflexive (identity maps) and transitive (closure under composition); the groupoid structure, which demands that e...

متن کامل

Some collapsing operations for 2-dimensional precubical sets

In this paper, we consider 2-dimensional precubical sets, which can be used to model systems of two concurrently executing processes. From the point of view of concurrency theory, two precubical sets can be considered equivalent if their geometric realizations have the same directed homotopy type relative to the extremal elements in the sense of P. Bubenik. We give easily verifiable conditions ...

متن کامل

A Network Approach to Bayes-Nash Incentive Compatible Mechanisms

This paper provides a characterization of Bayes-Nash incentive compatible mechanisms in settings where agents have one-dimensional or multi-dimensional types, quasi-linear utility functions and interdependent valuations. The characterization is derived in terms of conditions for the underlying allocation function. We do this by making a link to network theory and building complete directed grap...

متن کامل

A Semi-analytical Solution for Flexural Vibration of Micro Beams Based on the Strain Gradient Theory

In this paper, the flexural free vibrations of three dimensional micro beams are investigated based on strain gradient theory. The most general form of the strain gradient theory which contains five higher-order material constants has been applied to the micro beam to take the small-scale effects into account. Having considered the Euler-Bernoulli beam model, governing equations of motion are w...

متن کامل

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 276  شماره 

صفحات  -

تاریخ انتشار 2011